Ultra-high open-circuit voltage of perovskite solar cells induced by nucleation thermodynamics on rough substrates
نویسندگان
چکیده
To obtain high performance CH3NH3PbI3 perovskite solar cells, it is highly important to realise a high open-circuit voltage. Calculation results based on a modified diode model have indicated that a low bare ratio ϕ of the perovskite film is the most important factor determining the open-circuit voltage, where ϕ is defined as the ratio of the projection of the uncovered area of the perovskite film to the apparent area of the total substrate surface. To realise a low ϕ, we investigate the nucleation behaviour of crystals on rough substrates. The analysis results predict that, when CH3NH3PbI3 is deposited on conventional transparent conductive oxide substrates such as fluorine-doped tin oxide, preferential heterogeneous nucleation will occur on the concave regions of the substrate; then, depending on the subsequent growth step, full coverage of the perovskite film at both the macroscopic and microscopic scales is realised. As a result, an ultra-high open-circuit voltage, i.e., 1.20 V, can be achieved in devices using the full coverage CH3NH3PbI3 film. The thermodynamics theory of precipitation nucleation should shed light on solution engineering of thin films.
منابع مشابه
Application of Au@SiO2 Plasmonic Nanoparticles at Interface of TiO2 Mesoporous Layers in Perovskite Solar Cells
To investigate the plasmonic effect in perovskite solar cells, the effect of depositing Au@SiO2 nanoparticles on the top and the bottom of mesoporous TiO2 layers was studied. First, Au@SiO2 nanoparticles were synthesized. The particles were then deposited at the different interfaces of mesoporous TiO2 layers. Although the two structures show approximately similar optical absorption, only cells ...
متن کاملExclusion of metal oxide by an RF sputtered Ti layer in flexible perovskite solar cells: energetic interface between a Ti layer and an organic charge transporting layer.
In this work, the effects of a titanium (Ti) layer on the charge transport and recombination rates of flexible perovskite solar cells were studied. Ti as an efficient barrier layer was deposited directly on PET-ITO flexible substrates through RF magnetic sputtering using a Ti-source and a pressure of ∼5 mTorr. A Ti coated PET-ITO was used for the fabrication of a flexible perovskite solar cell ...
متن کاملEffect of Temperature on Electrical Parameters of Phosphorous Spin–on Diffusion of Polysilicon Solar Cells
Effects of temperature on electrical parameters of polysilicon solar cells, fabricated using the phosphorous spin-on diffusion technique, have been studied. The current density–voltagecharacteristics of polycrystalline silicon solar cells were measured in dark at different temperaturelevels. For this purpose, a diode equivalent model was used to obtain saturation current densi...
متن کاملInfluence of nanostructured TiO2 film thickness on photoelectrode structure and performance of flexible Dye- Sensitized Solar Cells
A commercial Ti-Nanoxide was deposited on In-doped SnO2 (ITO) polymer substrates by tape casting technique with different thicknesses (7, 14 and 36μm) to be used as photoelectrode in flexible dye-sensitized solar cells (DSSCs). Ruthenium dye was adsorbed on each TiO2 film for 24 h. The resulting photoelectrodes were used to form flexible DSSCs in combination with...
متن کاملNovel application of hybrid Perovskite materials in grid-connected photo-voltaic cells
In this paper, the novel application of organic/inorganic perovskite hybrid materials isproposed for grid-connected Photo-voltaic (PV) cells. The perovskite hybrid cells attracted a lot of interest due to their potential in combining advantages of both components. Looking to the future, there is no doubt that these new generations of hybrid materials, born from the very fruitful activitie...
متن کامل